Behavioural foundations of dynamic capabilities framework

The simplest way to promote independence of decision and action in an EMB is to create a legal framework that embeds EMB independence, as provided in the constitutions and principal EMB laws of many countries, such as Mexico, South Africa, Uruguay and Zambia. Such a link to the judiciary may make undue interference by the government or opposition parties in EMB operations less likely. In governmental EMBs, the appointment as executive head of a public servant known for his or her integrity and unwillingness to be politically directed, as in Northern Ireland, can have a similar effect. Impartiality To establish the integrity and credibility of electoral processes, and promote the widespread acceptance of election results, an EMB must not only conduct electoral events in a fearlessly independent manner; it must also be impartial in its actions.

Behavioural foundations of dynamic capabilities framework

They can be used for non-linear regression, time-series modelling, classification, and many other problems.

Machine Learning Group Publications

Differentially private database release via kernel mean embeddings. We lay theoretical foundations for new database release mechanisms that allow third-parties to construct consistent estimators of population statistics, while ensuring that the privacy of each individual contributing to the database is protected.

The proposed framework rests on two main ideas. First, releasing an estimate of the kernel mean embedding of the data generating random variable instead of the database itself still allows third-parties to construct consistent estimators of a wide class of population statistics. Second, the algorithm can satisfy the definition of differential privacy by basing the released kernel mean embedding on entirely synthetic data points, while controlling accuracy through the metric available in a Reproducing Kernel Hilbert Space.


We describe two instantiations of the proposed framework, suitable under different scenarios, and prove theoretical results guaranteeing differential privacy of the resulting algorithms and the consistency of estimators constructed from their outputs.

Scalable magnetic field slam in 3d using gaussian process maps. We present a method for scalable and fully 3D magnetic field simultaneous localisation and mapping SLAM using local anomalies in the magnetic field as a source of position information.

These anomalies are due to the presence of ferromagnetic material in the structure of buildings and in objects such as furniture. We represent the magnetic field map using a Gaussian process model and take well-known physical properties of the magnetic field into account.

We build local magnetic field maps using three-dimensional hexagonal block tiling. To make our approach computationally tractable we use reduced-rank Gaussian process regression in combination with a Rao-Blackwellised particle filter.

Gaussian Processes and Kernel Methods Gaussian processes are non-parametric distributions useful for doing Bayesian inference and learning on unknown functions. They can be used for non-linear regression, time-series modelling, classification, and many other problems. We believe in sharing our expertise and experience in resilience. Below is a list of papers, reports, book chapters, theses, and other articles we have published exploring a range of research areas to help build our knowledge base of resilience. The majority of George Brown programs are full-time. Some programs have a field placement experience, a co-op (scheduled periods of paid employment in related industries within an academic year) or an apprenticeship (an opportunity to learn under supervision from a skilled tradesperson on the job) as part of their requirements to graduate.

We show that it is possible to obtain accurate position and orientation estimates using measurements from a smartphone, and that our approach provides a scalable magnetic SLAM algorithm in terms of both computational complexity and map storage. Antithetic and Monte Carlo kernel estimators for partial rankings.

In the modern age, rankings data is ubiquitous and it is useful for a variety of applications such as recommender systems, multi-object tracking and preference learning.

However, most rankings data encountered in the real world is incomplete, which prevents the direct application of existing modelling tools for complete rankings.

Our contribution is a novel way to extend kernel methods for complete rankings to partial rankings, via consistent Monte Carlo estimators for Gram matrices: We also present a novel variance reduction scheme based on an antithetic variate construction between permutations to obtain an improved estimator for the Mallows kernel.

The corresponding antithetic kernel estimator has lower variance and we demonstrate empirically that it has a better performance in a variety of Machine Learning tasks.

Both kernel estimators are based on extending kernel mean embeddings to the embedding of a set of full rankings consistent with an observed partial ranking.

They form a computationally tractable alternative to previous approaches for partial rankings data. An overview of the existing kernels and metrics for permutations is also provided.

Streaming sparse Gaussian process approximations. Sparse approximations for Gaussian process models provide a suite of methods that enable these models to be deployed in large data regime and enable analytic intractabilities to be sidestepped. However, the field lacks a principled method to handle streaming data in which the posterior distribution over function values and the hyperparameters are updated in an online fashion.

The small number of existing approaches either use suboptimal hand-crafted heuristics for hyperparameter learning, or suffer from catastrophic forgetting or slow updating when new data arrive.

Try Our Program Comparison Tool

This paper develops a new principled framework for deploying Gaussian process probabilistic models in the streaming setting, providing principled methods for learning hyperparameters and optimising pseudo-input locations. The proposed framework is experimentally validated using synthetic and real-world datasets.

The first two authors contributed equally. The unreasonable effectiveness of structured random orthogonal embeddings. We examine a class of embeddings based on structured random matrices with orthogonal rows which can be applied in many machine learning applications including dimensionality reduction and kernel approximation.

We introduce matrices with complex entries which give significant further accuracy improvement. We provide geometric and Markov chain-based perspectives to help understand the benefits, and empirical results which suggest that the approach is helpful in a wider range of applications.

We present a data-efficient reinforcement learning method for continuous state-action systems under significant observation noise. Data-efficient solutions under small noise exist, such as PILCO which learns the cartpole swing-up task in 30s.

CRAN Packages By Name

PILCO evaluates policies by planning state-trajectories using a dynamics model. This enables data-efficient learning under significant observation noise, outperforming more naive methods such as post-hoc application of a filter to policies optimised by the original unfiltered PILCO algorithm.

Behavioural foundations of dynamic capabilities framework

We test our method on the cartpole swing-up task, which involves nonlinear dynamics and requires nonlinear control. Skoglund, Zoran Sjanic, and Manon Kok.

On orientation estimation using iterative methods in Euclidean space. This paper presents three iterative methods for orientation estimation.Understanding Organizational Capabilities and Dynamic Capabilities in the Following section explains this framework.

Behavioural foundations of dynamic capabilities framework

Foundations Organizational culture is defined by many authors in literature. Strategy Structure Support Mechanisms Behaviour that encourages innovation Communication x Vision and mission x Purposefulness x Flexibility. We are pleased to announce a one day symposium presenting the latest research on marine mammals and impulsive noise..

The symposium will take place in Amsterdam, The Netherlands, on 12 th June and is intended to bring together scientists, regulators, industry, and environmental groups to present and discuss the big picture of impulsive noise on marine mammals.

Dynamic foundation design – an integral element of a vibration mitigation strategy. Lower maintenance costs and improved safety –properly designed foundations reduce stresses on bearings.

Reduced failure of auxiliary equipment including small-bore attachments. Behavioural Foundations of Dynamic Capabilities Framework Behavioural Foundations of Dynamic Capabilities Framework.

In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Electoral Management. Electoral management encompasses both the entity responsible for governing elections and the various mechanisms, roles and functions this entity may have.

Faculty. We are a firmly established leading international centre for management research. This is reflected in our rating in the Research Excellence Framework (REF) which places us 8th in the UK. We have been consistently ranked in the top ten in Europe for research in the Financial Times MBA Rankings, and most recently rated 3rd in the UK for research.

Explore our featured insights | McKinsey & Company